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Abstract. The Bianchi identities are analysed to first order. There are two cases to consider. 
First, we examine the case in which the sources for the gravitational field are ignored, and 
obtain the solutions of the resulting homogeneous equations for the frame components of 
the Weyl spinor. Second, we include the sources and obtain solutions of the wave-like 
equation which occurs. The two cases are compared, especially with reference to the 
multipole moments which arise from these analyses. The moments arising from the 
solutions of the homogeneous case are due to contributions from terms with different 
dimensions. The moments of the inhomogeneous case are associated with a single dimen- 
sion only, and are used together with certain integral expressions involving the Bondi-Sachs 
news function to determine the main contributions to the energy momentum losses of 
gravitationally radiating isolated sources. 

1. Introduction 

The extreme difficulties inherent in the nonlinearity of the equations of general 
relativity force us, in the discussion of gravitational radiation, to adopt some form of 
approximation procedure. The procedure in which successive approximations about a 
flat space-time background are taken has been considered by several authors, notably 
(from the point of view of this paper) Janis and Newman (1965) who discussed the 
first-order (linearised) approximation, and Torrence and Janis (1967), Couch et a1 
(1968) who dealt with the second-order approximations. In the first-order approxima- 
tion the equations which occur are linear first-order partial differential equations for 
certain ‘frame’ components of the Weyl tensor. In the above papers the free field 
solution is considered, whence terms representing the sources for the radiation field are 
ignored; the linear equations are homogeneous in the frame components. In this paper 
we extend the discussion of the linear approximation to the inhomogeneous case (in 
which the source terms are included). 

The analysis of the homogeneous case yields certain functions (denoted by h, in this 
paper) called multipole moments, which arise via coefficients of the spin weighted 
spherical harmonics (which occur when null spherical polar coordinates are used). The 
way in which the analysis is performed in the inhomogeneous case leads in a natural way 
to a definition of multipole moment (denoted by holplcl.. .c,) based on dimensional 
behaviour rather than angular behaviour. It turns out that the h, are due to contribu- 
tions from terms with different dimensions, a behaviour which is described by the term 
‘dimensional mixing’. Even for the simplest systems this mixing is infinite; an infinite 
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(0  
number of terms with different dimensions contribute to any h,. This is markedly 
different from the haslcl...c,, which are associated with a single dimension. 

As far as establishing general features of gravitational radiation the source depen- 
dent moments h a p ~ c l . . . c ,  are not of great use,, leading as they do to a cumbersome 
analysis. Features like wave tails, and the existence of mass and momentum losses from 
radiating bodies can be (and have been) perfectly well established using the h,. 
However, by its very nature, the source dependent definition of moment is the one 
which should be employed whenever specific calculations related to given source 
configurations are required. This holds in particular for energy momentum losses. If 
the pseudotensor of energy is used in these calculations they turn out to be long and 
involved. This difficulty can be removed by using the Bondi-Sachs news function 
instead, This quantity will be used in this paper, and will be combined with the source 
dependent definition of moment to obtain the main contributions for energy momen- 
tum losses. The expressions are simple, and completely general. 

The sources are assumed spatially compact i.e. of finite extent. We shall also 
suppose that the moments are constant except for finite retarded time intervals, a 
condition described by saying 'the source is in motion only for finite time intervals'. This 
phraseology, it should be clearly understood, refers only to linear theory. If nonlinear 
approximations are taken into account then the source will in general recoil during the 
period in which the moments are non-constant. This recoil continues after the moments 
have once again assumed constant values. 

The paper is arranged as follows. In § 2 the solution for the homogeneous case is 
derived. The results are not new but are obtained for completeness, and because they 
will be required for comparison with the results of the inhomogeneous case, which are 
obtained in 9 3. Dimensional mixing is also discussed in some detail in this section. In 
§ 4 the formulae for energy momentum losses are derived and subsequently applied, in 
B 5 ,  to a particular example-that of the rotating rod. This example is used merely to 
illustrate the previous theory; the results, especially for the energy loss of the rod, are 
well known. 

( 1 )  

2. The Bianchi identities and the free field solution 

In the following and throughout the paper Latin capitals will be used for spinor indices 
and will take the values 0, 1, and Greek letters will be used for tensor indices and will 
take the values 0 ,1 ,2 ,  3. The metric has signature -2. Familiarity with spinor calculus 
is assumed in both this and the next section. The notation follows that of Newman and 
Penrose (1962), 9 9  3 , 4  (see also Penrose 1960, Pirani 1964). 

In general space-time the Bianchi identities in spinor form are 

(2.la) H' 
aDG'*ABcD = a,c @AB)G'H'  

(2 . lb )  

where the spinors YTABcD, @ABA,B, and A correspond to the Weyl tensor, trace free part 
of the Ricci tensor, and scalar curvature respectively. The aAB, are covariant differen- 
tiation operators. There are no identities independent of these. 

In empty space we can put = A = 0 whence (2.1) reduce to 
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Let us now linearise ( 2 . 2 )  i.e. let us work to first order in the expansion about the flat 
space-time background, whose metric in null spherical polar coordinates U, r, 8, C$ is 
given by 

ds2 = du2 + 2 du dr - r2(de2 + sin2 8 d(6’) ( 2 . 3 )  

from which a spin dyad oA, L~ is obtained which takes tiie,form 

Replacing the covariant operators  AB, by the partial differentiation operators defined 
with respect to the metric ( 2 . 3 )  and taking dyad components we obtain 

(2 .5 )  

A - A ’  flat a 
0 0 aAA’=-  

ar 
A-A‘ flat 

L L aAAf=a/au -&ar 

since aFi, = U ~ A A ~  d/ax’*, where are the symbols providing a translation from 
tensor indices to spinor indices (they may be taken as 2-l” x the unit matrix and the 
complex conjugates of the Pauli matrices), and where x w  = ( t ,  x ,  y ,  z )  = 
(U + r, r sin 8 cos C$, r sin 8 sin (6, r cos 8 )  are Minkowski coordinates. Taking dyad 
components of (2 .2 )  and using (2.4), ( 2 . 5 )  we re3dily find that (2 .2 )  reduce to the 
following set of eight equations 

and (k = 1 , 2 ,  3 , 4 )  

where a, = a / & ,  * = a/au, and 8,  are spin weight raising and lowering operators (see the 
appendix) 

- + ( k - 2 )  cot e 

-+ ( 2 -  k )  cot 

i a  
ae sin 8 a4 

i a  
a8 sin 8 aC$ 

8 f , b k = - (  -+- a 

and where $k (k =‘O, . . . , 4 )  are the dyad components of the spinor qABc0. At this 
stage an assumption on the behaviour of tJO at large r must be made in order to ensure 
that the space-time is asymptotically flat. We assume that? 

$0 = o ( ~ - ~ ) .  (2.9) 
With this (2 .6 )  are immediately integrated to give 

(2 .10 )  

f(% r, ‘-?,4) = O(g(r) )  means that /f(u, r, 8, 411 < g(r)F(u, e, 4) for some F independent of r and for all 
sufficiently large r. 
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the 4: being functions of integration independent of r. The k = 1 member of (2.7) 
becomes 

(2.11) 

The component q0 is a spin weight 2 quantity; hence it can be expanded in spin weight 2 
spherical harmonics (see the appendix) 

(2.12) 

Let us now seek a solution for AI, throughout the space-time exterior to the sources for 
the field in the form of a finite series in inverse powers of r. Noting the asymptotic 
behaviour (2.9) we try 

(2.13) 

with p finite. Substituting this into (2.11) and considering separately the coefficients of 
the different powers of r we obtain 

(1 - 1)(1+ 2) - n (n  + 3) 
(n  = 1 , .  . . , p )  2n 

and 

( 2 . 1 4 ~ )  

(2.14b) 

The equation involving U?, is not important here. We see from (2.14) that p can be 
chosentobe(I-2),forifp>I-2allu~,(u)automaticallyvanishfor n 3 1  -1. Further, 
once a i i 2 ( u )  is known, so also are all other a;b(u) (n  = 0 , 1 , .  . . , l-3). Hence by 
specifying u f i 2 ( u )  we obtain a solution for AI, of the form (2.13), with p = 1-2 and 
cik(u) (n  G 1-2) satisfying ( 2 . 1 4 ~ )  (with (2.146) automatically satisfied). Now, since 
we are considering linearised theory, all field quantities can be considered as being of 
first order in a parameter m characterising the mass of the radiating system. From the 
above remarks we accordingly set 

(0 
u j i 2 ( u )  = mh,(u) (2.15) 

(0 (1) 
the functions h,(u) being independent of any mass dimension. These h,(u) are defined 
as the 'multipole moments' of the source. The solution for the field corresponding to 
X . ~ - - I  h,(u) is called the 2'-pole (or ( l l ) )  solution 'related to the free field'. 

( 1 )  

( 1 )  
Using (2.12)-(2.15) we find that the (11) solutions for $o (denoted 40) are 

(2.16) 
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where 

2'-"-'(1+ n + I ) !  ( I  - 2 ) !  
(21)! ( 1  - n  - l ) ! ( n  - l ) !  Cn = ( 2 . 1 7 ~ )  

(2.17b) 

The remainder of the Weyl field i.e. the components * i  ( i  = 1 , 2 , 3 , 4 )  can now be 
determined via further consideration of equations (2.6) and (2.7), and can be simplified 
slightly by use of Birkhoff 's theorem and certain coordinate transformations. The 
details of these calculations are not of any great value and are omitted. Of interest is the 
solution for 4b4 

(2.18) 
$1, $2 and 43 do not contribute to any further discussion. 

3. The Bianchi identities in non-empty space 

EAB being Levi-Civita symbols, and (I I) denoting that the symmetrisation excludes all 
indices between the bars. Hence (3.2) is a second-order expression in the field 
quantities, and vanishes in the linear approximation. Denoting the operators ay;, by 
$AA, we thus have, as the linearised version of (3.1),  

(3.4) 
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( t ,  x, y ,  z )  being the Minkowski coordinates of 0 2. A solution of (3 .4 )  is immediately 
given for outgoing waves: 

(3 .5)  

where r* is the distance from the field point P to the source points, where @ABA'B' is 
evaluated at a retarded time t - r * ,  and where V is any volume which completely 
encloses all the sources for the field. r* is related to r (distance of field point from origin 
0) via r*2 = r2+  f 2  - 2 x a t a  (r2 = x"x,, 6' = tata) where source and field points have 
coordinates (t, 6 " )  and (t, x " )  = x' respectively (lower case Latin letters ranging and 
summing over 1, 2 and 3). By contracting with suitable combinations of the dyad 
spinors o A  and i A  we can obtain the dyad components +bo,. , . , $4. Our interest will 
centre, however, on the component g4, which can be written as 

d V  (3.6) 
A B C D-[E'-G'I-[F'-H'l A A OAEG'H, 

$ 4 = - - 1  lT L L 0 1 0 L aDE!acFtjv- r* 

(the Levi-Civita symbol E ~ ' ~ '  = 2dE'GG'I has been used here for lowering spinor indices 
in (3.5)). 

The simplest way of dealing with this equation is to introduce two vectors mc(, n ' via 
the transcription 

(3 .7 )  A -A' A -A' m' = uFAA,o L Tl'L=(+'AA'L L , 

Using the spin dyad (2.4) we have, in the coordinates xF, 

m p = -  J2 (0 ,q" )  n* =$(I, - p a )  (3.8) 
1 

where 

1 
r 

p a  = - ( x ,  y ,  z )  = (sin 8 cos 4, sin 8 sin 4, cos e )  
(3 .9)  

q"= ( a  -+-- . i  " P a  
ae sin e a4 

Since, via the Einstein field equations, QABA'B' can be written in terms of the energy 
momentum tensor Twy and its trace T as 

(3.10) 1 
(PABA'B' = 41T(+.ILAA'uwBB'( T p y  - S V W v T )  

with T~~ being the Lorentz metrict-diag(1, -1, -1, -1)-we have from (3.6) 

(3.11) $4 = 2{2n ' " f i v f i a n  6 - W n  " f i 2 " f i P  - f i  .IL* vn en 5 )  - a 2 m ,  
ax" axv 

with 

(3 .12)  

t Note that all raising and lowering of indices is accomplished here by using qwv. 
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Upon performing the coordinate transformation U = t - r, x a '  = x a ,  14~  becomes 

with dots denoting differentiation with respect to U ,  as before. Now 

whence Map can be expanded as 

... 
N a p l a b c  +3p"(2pbp' - a b c )  - 

r2  

where 

Let us define quantities hup~clcz...c, (U) by 

Noclc ,cZ  ... c, 

ma"+' hOcIc,cz ... c ,  = 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

'm' being a mass parameter (cf § 2)' and ' a '  a length parameter, for the system. The 
important point about these quantities (3.17) is that they are dimensionless i.e. they are 
not affected by any change in units in 'm' or ' a ' .  They are called (see also Bonnor 1966) 
the moments of mass, momentum and stress respectively. Substituting (3.17) into 
(3.15) we see that MOB, and hence 4t4, can be written as a singly infinite series in ' a ' :  

G4 = m a +4, with 1414 independent of 'in' or ' a ' .  1414 will be called the 2'-pole (or 
(11)) solution 'related to the sources'. The difference between this 2'-pole solution and 
the one given in (2.18) should be stressed; the solution here is defined as the coefficient 
of a dimensional term, whereas that in (2.18) is defined in terms of coefficients of spin 

weighted spherical harmonics. The tilde on 4t4 here is used to avoid confusion with the 
(11) solutions in (2.18). 

Relations between the moments (3.17) can be obtained via ( 2 . l b ) ,  which so far have 
not been discussed. By linearising these equations we can show that they are equivalent 
to the familiar conservation equations vu' aTvu/a~p = 0 (5' = ( t ,  ea)). By multiplying 

l8 8 8 

( 1 )  
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them throughout by &,&, . . . &, and integrating over any volume enclosing the sources 
we obtaint 

~ O O I C ~ C ~ . . . ~ , ,  = -nh o ( C I I C  2 . . . C , )  ( 3 . 1 8 ~ )  

~ O C I C ~ C ~ . . . ~ ~  = - ~ h c ( c , ~ C , . . . c , ) .  ( 3 .18b)  

The monopole ( 1  = 0) and dipole (1  = 1 )  solutions for $r4 can easily be shown to vanish. 
The first non-vanishing contribution to $4 comes from 1 = 2 .  Using (3 .18 )  and the 

relations qcqc = qcpc  = 0, the solution for $4 can be written in terms of spherical 
harmonics as 

6 

where 

with 

K a b  = hoo/ab .  

(2) 
This solution is formally identical with $r4 in (2 .18)  

(3 .19)  

(3 .20)  

(3 .21)  

(3 .22)  

(2) 
and it may seem reasonable to take the H, as being equivalent, to within a factor of 

proportionality, to h,. This, however, is not the case as a study of $r4 shows. The 
solution is 

- 
(2) (3 )  

(3 .23 )  

t Simply integrating the conservation equations as they stand gives 6oo = h o c  = 0 expressing conservation of 
mass and linear momentum in the linear approximation. 
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where 

(3.24) 

(3) (3, 
H3 =H-3 = ~ [ ~ K ~ Z Z - K ~ ~ ~ + ~ ( ~ K ~ ~ Z - ~ Z Z Z ) ~  

with 
Kabc = h OOlabc (3.25) 

and with b,(u) being defined in terms of the spin weight -2 quantities qbcfcpalhOalbc by 

(3.26) 

Thus the terms involving b, are (when multiplied by a') also a part of (3.22), whereas 

the set of terms involving H4 is formally identical to the solution $4 of (2.18). 
(3) (3) 

4(ar 
We might expect that were we to calculate a 4b4 we would find a contribution from 

that solution to $4 also. In fact, we might expect that all (or, in particular cases, an 

infinite subset of) (132)  contribute to 4b4. Thus it seems that $4 does not, 
in general, have unique dimension, containing contributions from terms of dimensions 

ma' ( I  3 2) .  Likewise it seems that $4 contains contributions from a $4 ( I  3 3) and so 

on. If this is the case it would seem appropriate to describe the $4 of (2.18), and in 

particular the moments %:(U) of those solutions, as being 'dimensionally mixed'. 

( 2 )  

iis ( 2 )  ( 2 )  

(3) '5 

( 1 )  

These statements are merely conjecture at this stage. The calculations required to 

obtain $4 and $4 are long and involved; further solutions would be even more 
complicated. To facilitate further discussion we therefore turn to a study of the 
asymptotic shear of congruences of null geodesics--a0. It is found, in both linearised 
and exact theories, that 

(3.27) 

bo is the Bondi-Sachs news function, which governs the dynamic evolution of the 
complete field. 

It is clear that the only term of (3.13) which will give rise to terms of O(r-') in an 
expansion of i+h4 in inverse powers of r is the first term on the right-hand side of the 
equation. From (3.13), (3.15)-(3.17) and (3.27) we easily obtain? 

iii T% 

--Go = coefficient of r-' in $4. 

(3.28) 

t Since we are assuming that the source is initially stationary, the functions of integration which arise when we 
integrate (3.28) twice with respect to U vanish. 
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Let us restrict ourselves, for simplicity, to axisymmetric radiating systems. A long, 
calculation based on (3.28) yields 

with 

D COS' e - sin2 e 2,1) 

C, D )ff CD 
C+D=n 
D even 

C+D=n 
D odd 

where 

(3.29) 

( n  3 0 )  

(3.30) 

(3.31) 

In (3.31) the coordinates (R, 4, z )  are cylindrical polars, TLf are the space components 
of the energy momentum tensor in these coordinates, and S is any surface g(R, z )  = 0 
enclosing the sources (dS = dR dz).  

A simple but somewhat artificial source model shows quite clearly the dimensional 
mixing. This model has already been considered by Bonnor (1959) and Rotenberg 
(1964). We have two particles A, B, each of mass im, oscillating symmetrically in a 
straight line AB about their centre of mass 0, taken to be the origin of a rectangular 
coordinate system Oxyz. The coordinates of A, B at time U are taken to be (0, 0, a l ( u ) )  
and (O,O,  -a l (u ) )  respectively, with O < a ~ S i a  for all U .  In this system the only 
non-vanishing components of the energy momentum tensor are T33, T30 and Too. This 
implies that the only non-vanishing &$eh) in (3.30) are ( ~ f : ~ ~ ~ ~ ) ,  which (putting 
T33 = T33(Z, u)S(R)/277R) are given by 

(3.32) 

(the prime above T33 is no longer necessary). Using the conservation equations (3.18) 
we have from (3.29), (3.30) 

(1 3 2) 
(CO 1 d' 
U =-sin2 8 cos'-' e 7 H l ( U )  

l !  du 

where 

(3.33) 

(3.34) 
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whereas the ( 1 1 )  solution for the r - l  part of the I,!J~ given by (2.18) gives, for this 
two-particle case, 

(OO -2'(1 -2)! d' ( 1 )  
U =  7 h (u)P: (cos e) (1 3 2) (21)! du 

(iI0 ( 1 )  
where -U is the coefficient of r - l  in i,b4. Using 

C 2 , m P 2  + c4,mP4 + + cm+~,mPm+~ 
sin2 e cosm e = 

+ c5,mP~ + * + cm+~,mPm+;~ 

for m even 

for m odd 

2 2 2 

2 2 

(3 .35)  

(3 .36 )  

- 
/'"O where the coefficients are non-zero constants?, we easily see that each a U ( I  even) 

contributes to U , U , with similar behaviour for the case 1 odd. Thus the 

moments g ( u )  are due to an infinite number of contributions, each contribution having 
different dimension. Specifically we have 

('-$ ('-8) (2'0 

, . . . , 

(3 .37 )  

the ~ ~ , ~ + ~ ~ - 2  being the coefficients of (3 .36) .  
As mentioned previously, this two-particle case is somewhat artificial in that the 

masses considered are singularities. However, it should be obvious that in more 
realistic situations, in which most or all of the terms of (3 .30)  would be brought into play 
(as opposed to the single term used in the two-particle case) dimensional mixing is 
assured for all except the most special systems. Indeed it seems possible that all 
radiating systems (but not, it seems, static systems) give rise to the mixing, although this 
conjecture might be somewhat difficult to test, vitiated as it is by complicated cal- 
culations. 

4. Energy momentum radiation from compact sources 

The paper of Sachs (1962)  introduced a certain group-the Bondi-Metzner-Sachs (or 
BMS) group-as an asymptotic symmetry group of transformations for an asymptotic- 
ally flat (or, more precisely, 'AF') space-time. Although not a Lie transformation group 
we may imitate the methods used in Lie group theory to obtain its infinitesimal 
generators. Sachs, using a somewhat heuristic quantum argument, proceeded to 
associate with these generators certain integrals. He then identified some of the 
integrals with the energy momentum content of the space-time$. 

t The cr,,, (m 3 0, 2 S r s m + 2) are given by 

if m + r i s o d d .  

t For further discussion of the generators of the BMS group see Carmeli (1977). 
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The rate of energy and linear momentum loss from a radiating source is given as the 
(retarded) time derivative of the momentum 4-vector P,, given by 

P, = (PO, PI,  PZ, ~ 3 )  = - &-OB'(I, sin e cos 4, sin e sin 4, cos e) 
2 ' I  

where 

(4.1) 

(4.2) 

It should be noted that the integrals (4.1) have also been derived by a purely relativistic 
method by Tamburino and Winicour (1966) using 'flux linkages' for the asymptotically 
flat space-time. 

The six generators Lap (= -Lo") for angular momentum are 

L ' ~  E L, = a l a 4  
= R, = sin e a lae  + U COS e a l a u  

and, putting L* = L~~ f i ~ ' ~ ,  R' = L'O F iLz0, 

(4.3a) 

L* = e"+(a/ae *i cot e ala+)  
R* = -e*i*(cos e a lae  * i cosec e ala4 - U sin e a/&) 

(4.3b) 

from which the angular momentum of the system in non-flat space is given by the 
integrals 

1 
I{L,} = 5 I &OLzy 

I{L*} = - ( c i ' ~ ' ~  T 2 e*id cosec e ciOr) 
2 ' I  

(4.4) 

where 

Y(U, e, +)=c+O(U, e,4)-b0(-w, e,4)- i~O(w, e,4). (4.5) 

The integrals involving R,, R' do have physical meaning but are not importan: here. 
We now calculate the dominant contributions to these expressions using tke 

multipole solutions for go obtained in 0 3t. In particular, we require the solutions U 

and U' which, dropping tildes and introducing a (2~)-" '  normalising factor, are given 

( 2 b  

m 

by 

(4.6) 

t The coordinates used in (4,1), (4.4) are Bondi-Sachs coordinates U, r, 8, q5 whereas the coordinates U, r, 8, q5 
used in previous sections are related to flat space-time. From the point of view of the calculations to be 
performed here these sets of coordinates can be considered equivalent. 
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and 

(2) (3) 
In these equations K , , ,  *... ,", H, and H, are given by (3.20), (3.21), (3.24) and (3.25), 
and the conservation equations (3.18) have been used. The quantities Azm, A3m are 
defined in the appendix, as are 2Y;f. The functions g,(u) are given by 

1. go = n ( C 4  + Cg) = -go 
1 gl =del + c3) = -g-l 

g2 = z(i(c4 - c 5 )  + c2)  = -g-2 1 

where 

(4.8) 

Let us return now to (4.1). Differentiating its first component with respect to U gives 

(4.10) 

the integrals being taken over the sphere. O ( m P a 4 )  ( p  b 1, q 0) denotes a term of the 

form Zrap,saq m a a ,  each a being independent of m or a. Using (4.6) and the 
orthonormality condition (A5) gives 

s ( r s )  (Is) 

(4.11) 

Similarly we can find the contributions of order m2a4 for the rate of linear momentum 
loss. Using the results (A10) we easily find that all three components vanish, establish- 
ing that there exists no linear momentum loss at infinity due to quadrupole-quadrupole 
interaction of a radiating source. The first non-zero contribution to linear momentum 
loss comes from the quadrupole-octupole interaction. Written out, we have to find q I, (+p0 

U cr (sin 8 cos 4, sin 8 sin &, cos 8) d a  + complex conjugate. (4.12) 
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Once again results (A10) help considerably, and we find 

and 

(4.13) 

iij iji' iij li'j 
m2u5 Re{HoHo+ l6H1HP1 dP3 4 -=- 

du 315 ... 
i i j  'E 128 iij ... (2) + 8OHzH-2} + - m ' a  Re{H-, g l  + 8H-2g2) + O(m ' a  '). (4.14) 

15 

Finally we calculate the integrals corresponding to the rate of angular momentum loss. 
The fact that the source is in motion only for finite time intervals (in the sense described 
in the introduction) allows us to set the y (u ,  8,4) of (4.5) as ao(u ,  @,q5). The rate of loss 
in the z direction is 

(4.15) 

A lengthy calculation gives for the second equation of (4.4) 

5. The rotating rod 

As a check on the results of the previous section we consider a specific radiating system: 
that of the rotating rod. 

The rod will be supposed to rotate for a finite period, outside of which it is stationary. 
A mechanism for starting and stopping the motion has been described by Rotenberg 
(1972). The rod A1OA2 will be taken to be of mass m, length a, and small uniform cross 
section $, and will be taken to coincide with the x axis of a rectangular coordinate system 
Oxyz at time U = 0. At this time it is rotating with angular velocity w in the x y  plane, and 
continues to rotate with this angular velocity until time U = U, whence we have 
&x0A2 = wu at time U (0 s U =s U) .  In the linear approximation we take the centres of 
both mass and rotation as 0. When nonlinear i.e. O(m2) terms are taken into account 
these centres do not coincide, as we shall show shortly. Write 10AiI = aKi ( i  = 1,2)  and 
consider any point Q on the rod such that OQ = a l  (-KI =s 5 s K 2 ) .  Let p ( l )  be the 

volume density at Q, and define quantities I (the nth moments of the rod about its 
(n) 
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centre of mass) by 

which are calculated for the period of constant spin of the rod i.e. for O s  U s U. The 
dimensionless moments (up to hablcde)  have been given by Rotenberg (1968) for this 
case. The moments we require are 

(2) (2) 152 
h00122 = - m a z  

( 2 )  
I C Z  I sc 

h00112 = - hO0lll = - ma2 ma 

(3) (3) 
w I s c  O I S  c 

ma ma h0llll = 3 = -h02/12 h01/12 = 3 = - h 0 2 / 2 2  

(3) (3) 
w I s  w I c  

ho2/11= -- ma h01122 = - ma 

(3) (3) 
I s  

ma ma hoo/lll= - h001222 = 3 

(3) (3) 
I sc2 I s  c 

h001122 = - ma ma hOOjll2 = - 

all other h 0 0 / a b ,  hoalbc, hOO/abc vanishing, where 

s =sin wu c =cos wu. 

We therefore find from (3.20), (3.24) and (4 .8H4.9)  that 

(5.3) 

O I  
g1= -~ (s +ic). 

24ma3 go = g2 = 0 

The rate of energy momentum loss is now easy to compute. Using (4.11) and 
(4.13)-(4.16) we find that 
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dP, 464 ( 2 ) ( 3 )  
-- - _- I I @’(sin wu, -cos mu, 0) + O(m 2a 6 ,  
du 105 

d 32 
du 5 
- I{L,} = -- 1 2 ~ 5  + o ( ~ ~ ~ ~ )  

(5.5b) 

( 5 5 )  

Result ( 5 . 5 ~ )  is very well known, and (5.5b) has been obtained by Rotenberg (1968) 
using the pseudotensor. He also obtained a different answer for linear momentum loss 
using a method originally devised by Synge (1960, chap 4). The discrepancy between 
the results appears to be due to the fact that the quantities in (5 .5b)  give the rate of 
momentum loss at (null) infinity in the asymptotically flat space-time, and include a 
contribution from the gravitational field, whereas the losses obtained by Synge’s 
method relate only to the source itself. The contribution from the gravitational field 
turns out to be 13/116 times the expression for dP,/du given by ( 5 . 5 b )  (see Rotenberg 
for details). Using either result, it is clear that the linear momentum of the rod varies 
cyclically, and that the centre of rotation of the rod does not coincide with its centre of 
mass. 

6. Conclusion 

The previous study has been that of the linearised theory of spin 2 fields in the region 
exterior to the sources producing the fields. The two definitions of multipole moment 
which occur arise firstly via the solution of first-order linear homogeneous differential 
equations with rather general boundary conditions relating to asymptotic behaviour, 
and secondly via inhomogeneous wave equations. Although the homogeneous case has 
been considered in some detail, the inhomogeneous case has received very little 
attention. In this latter case a certain proportion of the blame for the lack of progress in 
earlier work can be attributed to the tensor methods used in the analyses, which turned 
out to be somewhat involved. The more complete analysis in this paper is largely due to 
the use of the spinor formalism. This bypasses many of the earlier calculational 
difficulties; in particular, awkward coordinate transformations (see Rotenberg 1964) 
are obviated. 

As mentioned in the introduction, the first definition of multipole moment is useful 
in describing general features of gravitational radiation, whereas the second definition 
is the one to be employed whenever calculations for specific source configurations are 
required. Thus we see that it is useful, and arguably necessary, to have two ‘moment’ 
definitions in (linearised) general relativity. It does not seem in the literature that a 
clear distinction between the two types of moment has ever been made. This distinction 
is obviously necessary considering the widely different dimensional behaviour in the 
two definitions. Indeed, the lack of awareness regarding dimensional behaviour 
appears to have led to some incorrect results: in one approximation methodt used in 
recent years in gravitational radiation certain solutions were obtained which seem 
incorrect, essentially because the form of the angular-dimensional coupling, and hence 
dimensional mixing, seems incorrect. 

i- Namely, the double parameter approximation method developed by Bonnor (1959) and Bonnor and 
Rotenberg (1966). For further discussion regarding this point see Willmer (1977, ch 5 ) .  
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Most of the work described in this paper forms part of a thesis submitted in 1977 to the 
University of London for the degree of PhD. 
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Appendix 

The spin weight s spherical harmonics are defined by 

1/2  (-) @Y;" O s s s l  

- 1 s s s O  ( l + s ) !  1 ( - 1 ) h )  a-";" 
,Y;" = 

for general integral s, where 8 , z  are spin weight raising and lowering operators defined 
by 

AT = -(sin e)' -+- - {(sin 
S I b  e P,) 

with 77 of spin weight s (for further details regarding 8 ,  z and spin weight see, for 
example, Couch et a1 (1968)). Y;" are ordinary spherical harmonics 

where 

and where P p '  (cos 6) are associated Legendre functions. The spin-s spherical 
harmonics obey the orthonormality condition 

(integration being taken over the sphere), which helps in the evaluation of the integrals 

1, Y ;" P;." (sin 6 cos 4, sin 8 sin 4, cos 6) dR 

which arise in (4.12). To calculate (A6) we need the expression for the product of 
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spherical harmonics of spin weights s and t :  

(21 + 1)(2k + 1) ' I 2  ) (knlm I klj, m + n )  

X (k - tl - s 1 klj, -s - t)s+tY,"+" 

where 

( k P h  I klj, a + P )  
( I +  k - j ) !  ( j +  k - l ) !  ( j +  I -  k)! (2j+ 1) ' I 2  

=(  ( j +  k + 1 + l)! ) 
(-l)P((k + P ) !  ( k  - b ) !  (1  +a)! ( I  - a ) !  ( j + a  + p ) !  ( j - a  -P)! ) '"  

x c  p ! (k + 1 - j  - p ) !  (k - P - p ) !  (1 + - p ) !  ( j  - 1 + P + p ) !  ( j  - k - + p ) !  
(A81 

are real Clebsch-Gordan coefficients. The conditions to be satisfied in (A8) are 
1 + k 2 j ,  1 + j  3 k, k + j  3 I ;  otherwise the coefficients are zero. The summation is over 
those values of p for which the contents of all the factorials are greater than or equal to 
zero. Using 

(sin e cos 4, sin e sin 4, cos e )  = &((YT' - Y;), i(Yy' + Y ; ) ,  JZY:) (A91 

and (A5), (A7), (A8) the integrals of (A6) are 

Is 2 Y ;" 9 2 F?' sin 8 (cos 4, sin 4 )  dR 

and 

( I +  m + 1)(1 -m  + 1)(1+3)(1- 1) 
1+1 (21 + 3)(21+ 1) ai+1,i'Smm'. 

(AlOa) 

(AlOb) 
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